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ABSTRACT DIGITAL TWIN DEVELOPMENT AND UNCERTAINTY QUANTIFICATION

We describe the offline machine learning development v | We first developed a stacked LSTM model to reproduce the behaviors of the GMPS system,

for study that aims to precisely regulate the Fermilab | ‘% thereby establishing an environment to train our RL algorithm [1]. We experimented with
Booster Gradient Magnet Power Supply (GMPS) via a | different time lookback windows, scalers, variable inclusion, and signal decomposition
Field-Programmable Gate Array (FPGA). As part of this

effort, we created a digital twin of the GMPS control

when crafting our model inputs and determined that a composed 6 to 2 model, including:
B:VIMIN + B:IMINER + B_VIMIN + B:LINFRQ + I:IB + :MDAT40 — B:VIMIN + B:IMINER

system by training a Long Short-Term Memory (LSTM) to "},-( B with 1 second lookback and MinMax scaling performs = I
capture its full dynamics. We outline the path we took to wwew m e w o= best. Here BiLINFRQ is the 60Hz line frequency offset, . »7 Ll W l ‘ il
carefully validate our digital twin before deploying it as a and I:IB/ I:MDAT40 measure the main injector current. : ;ﬁ}ﬂ"Jr"ﬁfl,‘ri“a}“ﬁﬁ:ﬁ}i:W.'ﬁ’ ';”'f*"’ i ‘l’ ‘W *MW M rlb
reinforcement learning (RL) environment. Additionally, Additionally, after training our environment model, we .-

we demonstrate the use of a Deep Q-Network (DQN) performed concrete dropout as a means of uncertainty

policy model with the capability to regulate the GMPS quantification [4]. We found that an intermediate I . i , M lT:
against realistic time-varying perturbations. = oo o dropout layer with probability .2 after the first LSTM ¢ wllﬂ‘w U~f”lh#)~”'wh il M ’MW VU[M 'W” W
ayer gave us our best o | d l‘ww”‘ 1|| r'w | ‘M l
Our intent is to develop an RL pipeline that can regulate We present our most recent RL results, training a DQN as our policy model in our verified digital twin environment.
the Booster Gradient Magnet Power Supply (GMPS) The DQN approach involves training a deep neural network to learn the RL action-value function, which maps agent
Reference system _ current better than actions to rewards, and is usually deployed in environments that take discrete control actions [5]. We define our
SEiEreol eToeiossing arget $ the presently reward as -|B:IMINER| [1]. When comparing the DQN results to the PID controller, we see substantial improvement.
. camplec sefings  measreme™ implemented PID R — -  Testing Total Reward
controller aims to i We outlined the steps we took to carefully
_ regulate BIMINER, | ﬂ_;, U ef Wy | validate our digital twin— perhaps the most
feonmotsignals o Jeviation g g S=as EE=E " ' 7| important aspect of our machine learning
e 1 between the next [ﬂ F ? I,*ﬂ'""" | development. Without a robust surrogate
15Hz cycle minimum current reading (B:VIMIN) and its - s l;' | model to support offline training, we would
setting (B_VIMIN) using previous cycle values and the _ . | ‘:;' g | 5 _E::'Dt SE==-; not be able to trust deploying the trained
integral (y) and proportional (a) gains [2, 31. e p_umw - o = i agent on the live system in the future.
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